Life Coach Nyc Free

The first introduction to psychology usually comes in the form of biology classes. Many biology students already come into class with at least basic understanding of psychology. They understand that their genes determine how their bodies work, how they function and, to a certain degree, how they behave or what illnesses they might develop. But hardly any of these students have a clear comprehension of what exactly DNA is, where it’s found in the body, why it causes problems, and how it can be manipulated or changed.

In the case of development, the genes passed from one generation to the next just need to survive. Genes are nothing more than instructions for doing things. Humans, as all living things, are programmed through thousands of years of natural selection to participate in behavior that’s survival oriented. The basis for this programming is that the expression of certain genes that cause specific traits, such as aggressiveness, violence or sexuality. In the case of psychology, the genes that are passed on to us through our parents, siblings, or other kin will determine such behaviour.

Concerning understanding what is happening genetically, we’re still in the age of molecular biology. In this frame, genes are simply packets of information carrying directions. This is the way humans, plants and animals have been growing for thousands of years. Nevertheless, in the past 50 years or so, a revolution in the field of psychology has happened known as molecular biology or genomics. Genomics offers a new lens through which we could view the relationships between behaviour and genes.

The molecular basis for behaviors and human memory is in fact quite simple – it’s all about the epigenome. The Epigenome is a mobile memory storage that determines whether a behavior is going to be expressed or not. Like all memory storage systems, it contains information that is “programmed” in advance by the genome.

What we now know is that the genetic material that determines behaviour exists in all of us, but in varying quantities. The majority of the variations come from the variation in the copies of genes within the cellular memory storage of the individual. The copy of the gene that determines the behaviour is called the epigome. It is this particular copy that we call the epigenome.

The significance of the epigenome in psychology and its relationship to individual differences has been revealed in a landmark study on twins. For many years, autism research was based upon research on twins. However, it was found that there was substantial heritability (hitability) to behavior that existed between people who had identical twins but whose traits were very different. This study provided the first evidence of the significance of the epigenome in human behavior and its link to abnormal behavioral disorders like autism.

Although the importance of the Epigenome in psychology was established, many in the psychological area are hesitant to accept its potential as a substantial factor in mental illness. One reason for this is it is hard to define a real genetic sequence or locus that leads to a behavioral disorder. Another problem is that there are simply too many genetic differences between people to use a single DNA sequence to determine mental illness. Finally, although the research on the Epigenome has been promising, more work needs to be done to determine the role that genetics play in complex diseases like schizophrenia. If this finding holds true, it may be used as a foundation for studying other complex diseases that have complicated genetic components.

If you’re interested in learning more about Epigenetics and how it applies to psychology, I highly recommend that you follow the links below. My site discusses the exciting new technologies that are available today to better understand how Epigenetics affects behavior and the susceptibility to disease. You can also hear me speak on my epigenetics and autism blog. My research into Epigenetics is focused on understanding the ecological causes of disease, but I have also been involved in studying the relationship between Epigenetics and Autism. My future articles will also discuss diseases of the brain which can be impacted by Epigenetics.