Life Coach Bethesda Md

The first introduction to psychology normally comes in the form of biology classes. Many biology students already come into class with at least basic knowledge of psychology. They know that their genes determine how their bodies work, how they physically function and, to a certain extent, how they act or what illnesses they might develop. But very few of these students have an understandable understanding of what exactly DNA is, where it’s found in the body, why it causes problems, and how it can be manipulated or altered.

In the case of evolution, the genes passed from one generation to the next only have to survive. Genes are merely instructions for doing things. People, as all living things, are programmed through thousands of years of natural selection to participate in behavior that is survival oriented. The foundation for this programming is the expression of specific genes that cause specific traits, such as aggressiveness, violence or sexuality. In the case of psychology, the genes that are passed on to us through our parents, siblings, or other kin will determine such behaviour.

In terms of understanding what is happening genetically, we are still in the era of molecular biology. In this frame, genes are just packets of information carrying directions. This is the way humans, plants and animals have been growing for centuries. Nevertheless, in the last 50 years or so, a revolution in the field of psychology has occurred known as molecular biology or genomics. Genomics offers a new lens through which we could view the relationships between behavior and genes.

The molecular basis for behaviors and human memory is in fact quite simple – it’s all about the epigenome. The Epigenome is a mobile memory storage that determines whether a behavior will be expressed or not. Like all memory storage systems, it contains information that is “programmed” in advance by the genome.

What we now know is that the genetic material that determines behavior exists in all of us, but in varying amounts. Most of the variations come from the variation in the copies of genes within the cellular memory storage of the individual. The copy of the gene which determines the behavior is known as the epigome. It is this particular copy that we call the epigenome.

The importance of the epigenome in psychology and its relationship to individual differences has been revealed in a landmark study on twins. For years, autism research was based upon research on twins. However, it was found that there was substantial heritability (hitability) to behavior that existed between people who had identical twins but whose traits were very different. This study provided the first evidence of the significance of the epigenome in human behavior and its link to abnormal behavioral disorders like autism.

Although the significance of this Epigenome in psychology was established, many in the psychological field are hesitant to accept its potential as a significant element in mental illness. One reason for this is it is difficult to define a real genetic sequence or locus that causes a behavioral disorder. Another issue is that there are simply too many genetic differences between people to use a single DNA sequence to determine mental illness. Finally, even though the research on the Epigenome has been promising, more work needs to be done to find out the role that genetics play in complex diseases like schizophrenia. If this finding holds true, it can be used as a foundation for analyzing other complex diseases that have complicated genetic components.

If you are interested in learning more about Epigenetics and how it applies to psychology, I strongly advise that you follow the links below. My site discusses the exciting new technologies that are available today to better understand how Epigenetics affects behavior and the susceptibility to disease. You can even hear me speak on my epigenetics and autism blog. My research into Epigenetics is focused on understanding the ecological causes of disease, but I have also been involved in analyzing the relationship between Epigenetics and Autism. My future posts will also talk about diseases of the brain which can be affected by Epigenetics.