Jay Shetty In India

The first introduction to psychology usually comes in the form of biology classes. Many biology students already come into class with at least basic understanding of psychology. They understand that their genes determine how their bodies work, how they physically function and, to a certain degree, how they act or what illnesses they may develop. But very few of these students have a clear understanding of what exactly DNA is, where it’s found in the body, why it causes problems, and how it can be manipulated or changed.

In the case of evolution, the genes passed from one generation to the next just need to survive. Genes are nothing more than instructions for doing things. Humans, as all living things, are programmed through thousands of years of natural selection to participate in behavior that is survival oriented. The basis for this programming is the expression of specific genes that cause specific traits, such as aggressiveness, violence or sexuality. In the case of psychology, the genes that are passed on to us through our parents, siblings, or other kin will determine such behavior.

In terms of understanding what is going on genetically, we are still in the era of molecular biology. Within this framework, genes are simply packets of information carrying instructions. This is the way humans, plants and animals have been growing for thousands of years. Nevertheless, in the last 50 years or so, a revolution in the field of psychology has occurred known as molecular biology or genomics. Genomics offers a new lens through which we could see the relationships between behaviour and genes.

The molecular basis for human and behaviors memory is in fact quite simple – it’s all about the epigenome. The Epigenome is a mobile memory storage which determines whether or not a behavior will be voiced or not. Like all memory storage systems, it contains information that is “programmed” in advance by the genome.

What we now know is that the genetic material that determines behavior exists in all of us, but in varying amounts. The majority of the variations come from the variation in the copies of genes inside the mobile memory storage of the person. The copy of the gene that determines the behaviour is known as the epigome. It is this specific copy that we call the epigenome.

The importance of the epigenome in psychology and its relationship to individual differences has been shown in a landmark study on twins. For years, autism research was based upon research on twins. However, it was discovered that there was substantial heritability (hitability) to behavior which existed between individuals who had identical twins but whose traits were quite different. This study provided the first evidence of the significance of the epigenome in human behavior and its link to abnormal behavioral disorders like autism.

Although the importance of the Epigenome in psychology has been established, many in the psychological field are reluctant to accept its potential as a substantial element in mental illness. One reason for this is it is difficult to define a real genetic sequence or locus that leads to a behavioral disorder. Another issue is that there are just too many genetic differences between individuals to use a single DNA sequence to determine mental illness. Finally, even though the study on the Epigenome has been promising, more work needs to be done to determine the role that genetics play in complex diseases like schizophrenia. If this finding holds true, it may be used as a foundation for studying other complicated diseases that have complex genetic components.

If you’re interested in learning more about Epigenetics and how it applies to psychology, I strongly advise that you follow the links below. My website discusses the exciting new technologies that are available now to better understand how Epigenetics affects behavior and the susceptibility to disease. You can also hear me speak on my epigenetics and autism blog. My research into Epigenetics is centered on understanding the environmental causes of disease, but I have also been involved in studying the relationship between Epigenetics and Autism. My future articles will also discuss diseases of the brain that can be impacted by Epigenetics.