Epigenetics Contact

The first introduction to psychology usually comes in the form of biology classes. Many biology students already come into class with at least basic knowledge of psychology. They understand that their genes determine how their bodies work, how they physically function and, to a certain extent, how they act or what illnesses they might develop. But hardly any of these students have an understandable understanding of what exactly DNA is, where it is found in the body, why it causes problems, and how it can be manipulated or changed.

In the case of development, the genes passed from one generation to the next just have to survive. Genes are nothing more than instructions for doing things. Humans, as all living things, are programmed through thousands of years of natural selection to engage in behavior that’s survival oriented. The basis for this programming is the expression of specific genes that cause specific traits, such as aggressiveness, violence or sexuality. In the case of psychology, the genes that are passed on to us through our parents, siblings, or other kin will determine such behavior.

Concerning understanding what is happening genetically, we’re still in the era of molecular biology. In this framework, genes are just packets of information carrying instructions. This is the way humans, plants and animals have been growing for centuries. However, in the past 50 years or so, a revolution in the field of psychology has happened known as molecular biology or genomics. Genomics provides a new lens through which we could see the relationships between behaviour and genes.

The molecular basis for human and behaviors memory is actually quite simple – it is all about the epigenome. The Epigenome is a mobile memory storage that determines whether a behavior is going to be voiced or not. Like all memory storage systems, it contains information that is “programmed” in advance by the genome.

What we now know is that the genetic material that determines behavior exists in all of us, but in varying amounts. The majority of the variations come from the variation in the copies of genes within the cellular memory storage of the individual. The copy of the gene that determines the behaviour is called the epigome. It is this particular copy that we call the epigenome.

The importance of the epigenome in psychology and its relationship to individual differences has been shown in a landmark study on twins. For years, autism research was based upon research on twins. However, it was discovered that there was substantial heritability (hitability) to behavior which existed between people who had identical twins but whose traits were very different. This study provided the first evidence of the importance of the epigenome in human behaviour and its link to abnormal behavioral disorders like autism.

Even though the significance of the Epigenome in psychology was established, many in the emotional area are reluctant to accept its potential as a substantial factor in mental illness. 1 reason for this is it is hard to define a real genetic sequence or locus that leads to a behavioral disorder. Another issue is that there are just too many genetic differences between individuals to use a single DNA sequence to determine mental illness. Finally, although the research on the Epigenome has been promising, more work needs to be done to determine the role that genetics play in complex diseases like schizophrenia. If this finding holds true, it may be utilised as a basis for analyzing other complex diseases that have complex genetic elements.

If you’re interested in knowing more about Epigenetics and how it applies to psychology, I strongly advise that you follow the links below. My site discusses the exciting new technologies that are available today to better understand how Epigenetics affects behavior and the susceptibility to disease. You can even hear me speak on my epigenetics and autism blog. My research into Epigenetics is focused on understanding the environmental causes of disease, but I also have been involved in studying the relationship between Epigenetics and Autism. My future articles will also discuss diseases of the brain which can be affected by Epigenetics.