Does Oprah Winfrey Have A Thyroid Problem

The first introduction to psychology normally comes in the form of biology classes. Many biology students already come into class with at least basic understanding of psychology. They know that their genes determine how their bodies work, how they physically function and, to a certain extent, how they act or what illnesses they may develop. But hardly any of these students have an understandable understanding of what exactly DNA is, where it’s found in the body, why it causes problems, and how it can be manipulated or changed.

In the case of development, the genes passed from one generation to the next just need to survive. Genes are merely instructions for doing things. People, as all living things, are programmed through thousands of years of natural selection to engage in behavior that is survival oriented. The foundation for this programming is the expression of specific genes that cause specific traits, such as aggressiveness, violence or sexuality. In the case of psychology, the genes that are passed on to us through our parents, siblings, or other kin will determine such behavior.

Concerning understanding what is happening genetically, we’re still in the era of molecular biology. In this framework, genes are simply packets of information carrying directions. This is how humans, plants and animals have been evolving for thousands of years. However, in the past 50 years or so, a revolution in the field of psychology has occurred known as molecular biology or genomics. Genomics provides a new lens through which we can see the relationships between behavior and genes.

The molecular basis for human and behaviors memory is in fact quite simple – it’s all about the epigenome. The Epigenome is a mobile memory storage which determines whether a behavior will be voiced or not. Like all memory storage systems, it contains information that is “programmed” in advance by the genome.

What we now know is that the genetic material that determines behaviour exists in all of us, but in varying quantities. Most of the variations come from the variation in the copies of genes inside the cellular memory storage of the individual. The copy of the gene which determines the behaviour is called the epigome. It is this specific copy that we call the epigenome.

The importance of the epigenome in psychology and its relationship to individual differences was shown in a landmark study on twins. For many years, autism research was based upon research on twins. However, it was discovered that there was substantial heritability (hitability) to behavior which existed between people who had identical twins but whose traits were very different. This study provided the first evidence of the significance of the epigenome in human behavior and its link to abnormal behavioral disorders such as autism.

Although the significance of the Epigenome in psychology has been established, many in the psychological area are reluctant to accept its potential as a significant element in mental illness. 1 reason for this is it is difficult to define an actual genetic sequence or locus that causes a behavioral disorder. Another problem is that there are simply too many genetic differences between people to use a single DNA sequence to determine mental illness. Finally, although the study on the Epigenome has been promising, more work needs to be done to determine the role that genetics play in complex diseases like schizophrenia. If this finding holds true, it can be used as a basis for studying other complex diseases that have complex genetic components.

If you’re interested in knowing more about Epigenetics and how it applies to psychology, I highly recommend that you follow the links below. My site discusses the exciting new technologies that are available now to better understand how Epigenetics affects behavior and the susceptibility to disease. You can also hear me speak on my epigenetics and autism blog. My research into Epigenetics is focused on understanding the ecological causes of disease, but I have also been involved in studying the relationship between Epigenetics and Autism. My future posts will also discuss diseases of the brain that can be impacted by Epigenetics.